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Fractional Laplacian in Rn

Let s ∈ (0, 1) and u : Rn → R be smooth enough (belongs to Schwartz class).

Pseudodifferential operator:

F ((−∆)su) (ξ) = |ξ|2sFu(ξ).

Integral representation:

(−∆)su(x) = C(n, s) p.v.

ˆ
Rn

u(x)− u(y)

|x − y|n+2s
dy,

where C(n, s) =
22ssΓ(s+ n

2 )

πn/2Γ(1−s)
is a normalization constant.

Probabilistic interpretation: related to random walks with jumps.

Pointwise limits as s → 0, 1:

lim
s→0

(−∆)su = u,

lim
s→1

(−∆)su = −∆u.
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Integral definition for Ω ⊂ Rn

Let Ω ⊂ Rn be an open bounded set, and let f : Ω → R.

Boundary value problem: {
(−∆)su = f in Ω,

u = 0 in Ωc.

Integral representation:

(−∆)su(x) = C(n, s) p.v.

ˆ
Rn

u(x)− u(y)

|x − y|n+2s
dy = f(x), x ∈ Ω.

Boundary conditions: imposed in Ωc = Rn \ Ω

u = 0 in Ωc.

Probabilistic interpretation: it is the same as over Rn except that particles are

killed upon reaching Ωc.
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Between the identity and the Laplacian
Solutions to fractional obstacle problems on the square [−1, 1]× [−1, 1], with f = 0,
various s, and obstacle

χ(x) = max

{
1

4
−
∣∣∣∣x − (

−3

4
,
3

4

)∣∣∣∣ , 0}+max

{
1

2
−

∣∣∣∣x − (
1

4
,−1

4

)∣∣∣∣ , 0} .
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Some remarks

There is not a unique way to define a “fractional Laplacian” over Ω (spectral,
restricted, tempered, directional...).

Numerical methods for the integral fractional Laplacian on bounded domains

include

I Finite elements (on integral representation): D’Elia & Gunzburger (2013),

Ainsworth & Glusa (2018).
I Finite differences: Huang & Oberman (2014), Duo, van Wyk & Zhang (2018).
I Walk-on-spheres method: Kyprianou, Osojnik & Shardlow (2017).
I Collocation methods: Zeng, Zhang & Karniadakis (2015), Acosta, B., Bruno & Maas

(2018)
I Finite elements (using Dunford-Taylor representation): Bonito, Lei & Pasciak (2017).
I . . .

(To the best of my knowledge) these methods have been implemented mainly

for linear/semilinear problems.
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Goal & outline

Designfinite elementmethods for nonlocal (fractional) problems. Derive Sobolev

regularity estimates and perform a finite element analysis of these problems on

bounded domains.

(Linear) Dirichlet problem.

I Regularity of solutions.
I Finite element discretizations.
I Reduced regularity near ∂Ω: graded meshes.

Fractional obstacle problem.

Fractional minimal surfaces.
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Function spaces

Fractional Sobolev spaces in Rn:

Hs(Rn) =
{
v ∈ L2(Rn) : |v|Hs(Rn) < ∞

}
with

〈u,w〉 := C(n, s)

2

¨
Rn×Rn

(u(x)− u(y))(v(x)− v(y))

|x − y|n+2s
dydx,

|v|Hs(Rn) := 〈v, v〉 1
2 , ‖v‖Hs(Rn) :=

(
‖v‖2L2(Rn) + |v|2Hs(Rn)

) 1
2

.

Fractional Sobolev spaces in Ω:

H̃s(Ω) :=
{
v|Ω : v ∈ Hs(Rn), supp(v) ⊂ Ω

}
, ‖v‖

H̃s(Ω) := ‖v‖Hs(Rn).

Dual space: H−s(Ω) =
[
H̃s(Ω)

]∗
.
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Something old, something new...

All the basic analysis tools we need have a fractional counterpart!

I Integration by parts formula

(see next slide)X

I Coercive bilinear form on a suitable space (Poincaré inequality)

H1
0(Ω) 7→ H̃s(Ω)X

I Finite elements= projection w.r.t. energy norm

Galerkin orthogonalityX

I Interpolation estimates

Lagrange interpolation 7→ quasi-interpolationX

Nonlocality

I The Hs-seminorms are not additive with respect to domain partitions.

I Functions with disjoint supports may have a non-zero inner product: if u, v > 0 on
their supports, then

〈u, v〉 = C(n, s)

2

¨
supp(u)×supp(v)

−2 u(x) v(y)

|x − y|n+2s
dx dy < 0.

I Singular integrals, integration on unbounded domains.

I How smooth are solutions? Is there a lifting property?
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Integration by parts (Dipierro, Ros-Oton & Valdinoci (2017))

Ju, vK =
ˆ
Ω

v(x)(−∆)su(x) dx +

ˆ
Ωc

v(x)Nsu(x) dx.

Here,

Ju, vK :=
C(n, s)

2

¨
(Rn×Rn)\(Ωc×Ωc)

(u(x)− u(y))(v(x)− v(y))

|x − y|n+2s
dx dy,

andNs is a nonlocal derivative operator,

Nsu(x) := C(n, s)

ˆ
Ω

u(x)− u(y)

|x − y|n+2s
dy, x ∈ Ωc.

Randomwalk interpretation: if the particle goes to x ∈ Ωc, it may return to any point

y ∈ Ω, with the probability of jumping from x to y being proportional to |x− y|−n−2s.

The functionNsu can be regarded as a nonlocal flux density on Ω
c into Ω.
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Dirichlet problem

Given f ∈ H−s(Ω), find u ∈ H̃s(Ω) such that{
(−∆)su = f in Ω,

u = 0 in Ωc.

Variational formulation:

Ju, vK = (f, v) ∀v ∈ H̃s(Ω),

where (·, ·) stands for the duality pairing H−s(Ω)× H̃s(Ω).

Poincaré inequality in H̃s(Ω):

‖v‖L2(Ω) ≤ c(Ω, n, s)|v|Hs(Rn) ∀v ∈ H̃s(Ω).

Therefore, the form J·, ·K : H̃s(Ω)× H̃s(Ω) is an inner product in H̃s(Ω), and we
will write ‖v‖

H̃s(Ω) = Jv, vK1/2.

Existence, uniqueness, and stability follow from Lax-Milgram theorem.
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Sobolev regularity of solutions

Theorem (Vishik & Èskin (1965), Grubb (2015))

If f ∈ Hr(Ω) for some r ≥ −s and ∂Ω ∈ C∞, then, for all ε > 0,

u ∈

{
H2s+r(Ω) if s+ r < 1/2,

Hs+1/2−ε(Ω) if s+ r ≥ 1/2.

Example: if Ω = B(0, r) and f ≡ 1, then the solution u is given by

u(x) = C(r2 − |x|2)s+,

which does not belong to Hs+1/2(Ω). The regularity above is sharp!

Boundary behavior: if ∂Ω ∈ C∞ then

u(x) ≈ dist(x, ∂Ω)s + v(x),

with v smooth and vanishing on ∂Ω.
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Formulation and best approximation

Mesh: let T be a shape-regular and quasi-uniform mesh of Ω of size h.

Finite element space: let

V(T ) = {vh ∈ C0(Ω): vh
∣∣
K
∈ P1 ∀K ∈ T }.

Discrete problem: find uh ∈ V(T ) such that

Juh, vhK = (f, vh) ∀ vh ∈ V(T ).

Best approximation: since we project over V(T ) with respect to the energy
norm ‖ · ‖

H̃s(Ω) induced by J·, ·K, we get

‖u− uh‖H̃s(Ω) = min
vh∈V(T )

‖u− vh‖H̃s(Ω).
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Interpolation estimates in H̃s(Ω)

Localized estimates in Hs(Ω) (Faermann (2002)):

|v|2Hs(Ω) ≤
C(n, s)

2

∑
K∈T

[ˆ
K

ˆ
SK

|v(x)− v(y)|2

|x − y|n+2s
dydx +

C(n, σ)

sh2sK
‖v‖2L2(K)

]
,

where SK is the patch associated with K ∈ T and σ is the shape regularity
constant of T .

Quasi-interpolation (P. Ciarlet Jr (2013)): if Πh is the Scott-Zhang operator,

ˆ
K

ˆ
SK

|(v −Πhv)(x)− (v −Πhv)(y)|2

|x − y|n+2s
dy dx . h

2`−2s
K |v|2H`(SK)

,

where the hidden constant depends on n, σ, ` and blows up as s ↑ 1.

Error estimate for quasi-uniform meshes:

‖u− uh‖H̃s(Ω) ≤ C(s, σ)h
1
2 | ln h| ‖f‖H1/2−s(Ω).
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Example

Take Ω = B(0, 1) ⊂ R2 and f = 1. Then, the solution is given by

u(x) = C(1− |x|2)s+.

Orders of convergence in H̃s(Ω)

s Order (in h)

0.1 0.497
0.3 0.498
0.5 0.501
0.7 0.504
0.9 0.532

Discrete solution for s = 0.5.

Rate is quasi-optimal. Is it possible to improve the order of convergence?
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Hölder regularity of solutions

Theorem (Ros-Oton & Serra (2014))

Let Ω be a bounded Lipschitz domain satisfying an exterior ball condition. If

f ∈ L∞(Ω), then u ∈ Cs(Rn) and

‖u‖Cs(Rn) ≤ C(Ω, s)‖f‖L∞(Ω).

(Recall u(x) ≈ dist(x, ∂Ω)s near ∂Ω. )

Boundary behavior: if f ∈ Cβ(Ω) (β < 2− 2s), then there exist constants
C1, C2 > 0 such that

sup
x,y∈Ω

δ(x, y)β+s |∇u(x)−∇u(y)|
|x − y|β+2s−1

≤ C1, sup
x∈Ω

δ(x)1−s|∇u(x)| ≤ C2,

where δ(x) := dist(x, ∂Ω) and δ(x, y) = min{δ(x), δ(y)}.
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Weighted fractional Sobolev regularity

Definition of space H̃1+θ
α (Ω): let α ≥ 0 and θ ∈ (0, 1).

‖v‖2
H̃
1+θ
α (Ω)

:= ‖v‖2H1
α(Ω) +

¨
(Rn×Rn)\(Ωc×Ωc)

|∇v(x)−∇v(y)|2

|x − y|n+2θ
δ(x, y)2αdx dy,

with ‖v‖H1
α(Ω) = ‖(v +∇v) δ(·)α‖

L2(Ω) .

Theorem (Acosta & B. (2017))

Let Ω be a bounded Lipschitz domain satisfying an exterior ball condition,

f ∈ C1−s(Ω), and ε > 0 be small. Then, the solution u of the linear Dirichlet

problem belongs to H̃
1+s−2ε
1/2−ε (Ω) and satisfies the estimate

‖u‖
H̃
1+s−2ε
1/2−ε

(Ω) ≤
C(Ω, s)

ε
‖f‖

C1−s(Ω).
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Error estimates in graded meshes

Weighted fractional Poincaré inequality: if S is star-shaped with respect to a

ball, dS is the diameter of S, and v =
ffl
S
v, then

‖v − v‖L2(S) . d
s−α
S |v|Hs

α(S).

Weighted quasi-interpolation: for the SZ quasi-interpolation operator Πh,ˆ
K

ˆ
SK

|(v −Πhv)(x)− (v −Πhv)(y)|2

|x − y|n+2s
dydx . h

1−2ε
K |v|2

H
1+s−2ε
1/2−ε

(SK)
.

Energy error estimate (Acosta & B. (2017)): let n = 2 and T be a graded mesh

satisfying

hK ≤ C(σ)

{
h2, K ∩ ∂Ω 6= ∅,
hdist(K, ∂Ω)1/2, K ∩ ∂Ω = ∅,

whence#T ≈ h−2| log h|. Then,

‖u− uh‖H̃s(Ω) . h| log h| ‖f‖
C1−s(Ω).
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Numerical experiment

Exact solution: if Ω = B(0, 1) ⊂ R2 and f = 1, then u(x) = C(r2 − |x|2)s+.

Value of s 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Uniform T 0.497 0.496 0.498 0.500 0.501 0.505 0.504 0.503 0.532

Graded T 1.066 1.040 1.019 1.002 1.066 1.051 0.990 0.985 0.977
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Obstacle problem (with R. Nochetto & A. Salgado)

Given two smooth enough functions f, χ : Ω → R, find u : Rn → R, supported
in Ω, such that

u ≥ χ in Ω,
(−∆)su ≥ f in Ω,
(−∆)su = f whenever u > χ.

Can equivalently be written as a variational inequality:

Find u ∈ K such that

Ju, u− vK ≤ (f, u− v) ∀v ∈ K,

whereK denotes the convex setK = {v ∈ H̃s(Ω): v ≥ χ a.e. in Ω}.

Juan Pablo Borthagaray Nonlocal, nonlinear, nonsmooth



Obstacle problem (with R. Nochetto & A. Salgado)

Given two smooth enough functions f, χ : Ω → R, find u : Rn → R, supported
in Ω, such that

u ≥ χ in Ω,
(−∆)su ≥ f in Ω,
(−∆)su = f whenever u > χ.

Can equivalently be written as a variational inequality:

Find u ∈ K such that

Ju, u− vK ≤ (f, u− v) ∀v ∈ K,

whereK denotes the convex setK = {v ∈ H̃s(Ω): v ≥ χ a.e. in Ω}.

Juan Pablo Borthagaray Nonlocal, nonlinear, nonsmooth



Assumptions
Domain: ∂Ω is Lipschitz, and satisfies an exterior ball condition.

Data: from now on,

χ ∈ C2,1(Ω), 0 ≤ f ∈ Fs(Ω) =

{
C2,1−2s(Ω), s ∈

(
0, 1

2

)
C1,2−2s(Ω), s ∈

[
1
2 , 1

) .

We assume that χ < 0 on ∂Ω, so that

I the behavior of solutions near ∂Ω is dictated by an elliptic (linear) problem;

I the nonlinearity is constrained to the interior of the domain.

Non-locality: gluing interior and boundary estimates is not straightforward!

If η ≡ 1 in a neighborhood of x0, then it does not follow that

(−∆)s(ηu)(x0) = (−∆)su(x0).
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We assume that χ < 0 on ∂Ω, so that

I the behavior of solutions near ∂Ω is dictated by an elliptic (linear) problem;

I the nonlinearity is constrained to the interior of the domain.

Non-locality: gluing interior and boundary estimates is not straightforward!

If η ≡ 1 in a neighborhood of x0, then it does not follow that

(−∆)s(ηu)(x0) = (−∆)su(x0).
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Regularity in Rn

Theorem (Caffarelli, Salsa & Silvestre (2008))

For the obstacle problem in Rn, if f ∈ Fs(Rn) and χ ∈ C2,1(Rn), then the

solution u belongs to C1,s(Rn).

(In particular, u ∈ H
1+s−ε
loc

(Rn) for all ε > 0.)

Moral: free boundary regularity is not any worse than boundary regularity for the

linear problem.

Hope: prove regularity in weighted Sobolev spaces.
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Regularity for the obstacle problem on Ω

Interior regularity: Caffarelli-Salsa-Silvestre’s theorem + localization argument.

Boundary regularity: use the result for the linear Dirichlet problem.

Theorem

Let u ∈ H̃s(Ω) be the solution to the fractional obstacle problem. Then, for

every ε > 0 we have that u ∈ H̃
1+s−2ε
1/2−ε (Ω) with the estimate

‖u‖
H̃
1+s−2ε
1/2−ε

(Ω) ≤
C

ε
,

with C > 0 depending on χ, s, n,Ω, ‖f‖Fs(Ω).

Juan Pablo Borthagaray Nonlocal, nonlinear, nonsmooth



Regularity for the obstacle problem on Ω

Interior regularity: Caffarelli-Salsa-Silvestre’s theorem + localization argument.

Boundary regularity: use the result for the linear Dirichlet problem.

Theorem

Let u ∈ H̃s(Ω) be the solution to the fractional obstacle problem. Then, for

every ε > 0 we have that u ∈ H̃
1+s−2ε
1/2−ε (Ω) with the estimate

‖u‖
H̃
1+s−2ε
1/2−ε

(Ω) ≤
C

ε
,

with C > 0 depending on χ, s, n,Ω, ‖f‖Fs(Ω).

Juan Pablo Borthagaray Nonlocal, nonlinear, nonsmooth



Finite element approximation

Discrete problem: find uh ∈ Kh = {vh ∈ Vh : vh ≥ Πhχ} such that

Juh, uh − vhK ≤ (f, uh − vh) ∀vh ∈ Kh.

Weighted Sobolev regularity⇒ graded meshes.

Error bound: writing

‖u− uh‖2H̃s(Ω)
= Ju− uh, u−ΠhuK + Ju− uh,Πhu− uhK,

we reach

1

2
‖u− uh‖2H̃s(Ω)

≤ 1

2
‖u−Πhu‖2H̃s(Ω)

+ Ju− uh,Πhu− uhK.

Interpolation error can be bounded by

‖u−Πhu‖H̃s(Ω) ≤ Ch1−2ε‖u‖
H̃
1+s−2ε
1/2−ε

(Ω).
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Thus,

‖u− uh‖2H̃s(Ω)
≤ Ch2(1−2ε)‖u‖2

H̃
1+s−2ε
1/2−ε

(Ω)
+ (u− uh,Πhu− uh)s.

Second term in RHS: integrate by parts and use discrete variational inequality,

(u− uh,Πhu− uh)s ≤
∑
T∈T

ˆ
T

(Πh(u− χ)− (u− χ)) ((−∆)su− f).

Using the interior regularity u ∈ C1,s(Ω)
we deduce:

I (−∆)su ∈ C1−s(Ω),

I u− χ ∈ C1,s(Ω).

So, in these elements we have

|((−∆)su− f) (Πh(u− χ)− (u− χ))| ≤ Ch2.
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Convergence rate

Theorem

0 ≤ f ∈ Fs(Ω) and assume that χ ∈ C2,1(Ω) is such that χ < 0 on ∂Ω.

Considering shape-regular graded meshes as before, if h is sufficiently small,

then it holds that

‖u− uh‖H̃s(Ω) . h| log h|.
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Numerical experiments

Problem: let Ω = B(0, 1) ⊂ R2, and consider f, χ so that the exact solution is

u(x) = (1− |x|2)s+ p
(s)
2 (x),

where p
(s)
2 is a certain Jacobi polynomial of degree two.

log(dim(V
h
))

9.4 9.5 9.6 9.7 9.8 9.9 10 10.1 10.2

lo
g
(|

u
-u

h
| H

s
(R

n
))

-4.8

-4.75

-4.7

-4.65

-4.6

-4.55

-4.5

-4.45

-4.4

-4.35

-4.3

s=0.1

dim(V
h
)-1/2

log(dim(V
h
))

9.4 9.5 9.6 9.7 9.8 9.9 10 10.1 10.2

lo
g
(|

u
-u

h
| H

s
(R

n
))

-4.05

-4

-3.95

-3.9

-3.85

-3.8

-3.75

-3.7

-3.65

-3.6

-3.55

s=0.9

dim(V
h
)
-1/2

Left: s = 0.1; right: s = 0.9. The rate observed in both cases is≈ h.
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Qualitative behavior

Problem: let Ω = B(0, 1) ⊂ R2, f = 0 and

χ(x) =
1

2
− |x − x0|, with x0 = (1/4, 1/4).

s = 0.1 s = 0.5 s = 0.9
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Fractional minimal surfaces (preliminary work with R. Nochetto & W. Li)

Interaction: given s ∈ (0, 1/2) and two disjoint sets A, B ⊂ Rn, define

I(A, B) :=

ˆ
A

ˆ
B

1

|x − y|n+2s
dydx.

Problem: suppose we are given Ω, Ẽ ⊂ Rn with Ẽ ∩ Ω = ∅. We want to define
an extension E of Ẽ into Ω so that it minimizes a certain nonlocal perimeter.

Minimize I(E, Ec) among all extensions E:
take care of interactions

I between E ∩ Ω and Rn \ E,
I between Ẽ and Ω \ E.
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Nonlocal s-perimeter of E in Ω: (Caffarelli, Roquejoffre & Savin (2010))

Pers(E,Ω) := I(E ∩ Ω,Rn \ E) + I(E \ Ω,Ω \ E).

Minimal sets: a measurable set E ⊂ Rn is s-minimal in Ω if, for every
measurable set F such that E \ Ω = F \ Ω,

Pers(E,Ω) ≤ Pers(F,Ω).

Euler-Lagrange equation: a set E is s-minimal in Ω if and only if

(−∆)s
(
χE − χRn\E

)
= 0, along ∂E.
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Graph minimal surfaces

Assume Ω = Ω0 × R, and that

Ẽ = {x = (x′, xn) ∈ Rn : xn ≤ u0(x
′)},

where u0 : Rn−1 \ Ω0 → R is given.

We seek for u : Rn−1 → R such that u = u0 in Rn \ Ω0, and

ˆ
Rn−1

gs

(
u(y′)− u(x′)

|x′ − y′|

)
u(y′)− u(x′)

|x′ − y′|n−1+2(s+1/2)
dy′ = 0 in Ω0,

where

gs(r) =
1

r

ˆ r

0

1

(1 + ρ2)
n+2s
2

dρ.

Finding an s-nonlocal minimal surface in Rn becomes a nonhomogeneous prob-

lem for a nonlinear, degenerate diffusion operator of order s+ 1
2 in R

n−1.
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Discretization

Finite element space: let

V(T ) = {vh ∈ C0(Ω0) : vh
∣∣
K
∈ P1 ∀K ∈ T }.

Discrete problem: find uh ∈ V(T ) such that uh = Πhu0 in Rn−1 \ Ω0 and,

for all vh ∈ V(T ),

¨
gs

(
uh(y

′)− uh(x
′)

|x′ − y′|

)
(uh(y

′)− uh(x
′))(vh(y

′)− vh(x
′))

|x′ − y′|n+2s
dy′ = 0.

L2-gradient flow: initial guess u0h ∈ V(T ) and time step τ . Given ukh ∈ V(T ),

find u
k+1
h

∈ V(T ) such that

1

τ

(
u
k+1
h − u

k
h, ϕi

)
=

¨
gs

(
ukh(y

′)− ukh(x
′)

|x′ − y′|

)
(ukh(y

′)− ukh(x
′))(ϕi(y

′)− ϕi(x
′))

|x′ − y′|n+2s
dy

′,

∀1 ≤ i ≤ N .
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Energy

The solution uminimizes the energy

Is[u] =

¨
(Rn−1×Rn−1)\(Ωc

0×Ωc
0)

Gs

(
u(x)− u(y)

|x − y|

)
1

|x − y|n−2+2s
dy dx,

where Gs is defined as

Gs(a) :=

ˆ a

0

a− ρ

(1 + ρ2)
n+2s
2

dρ (G′
s = gs).

Since a ≤ C(Gs(a) + 1), we have

|u|W1,2s(Ω0) ≤ C Is[u] + C(Ω0).
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Convergence

Open question: how regular are nonlocal

minimal surfaces?

Stickiness phenomenon: boundary datum

may not be attained continuously!

(Dipierro, Savin & Valdinoci (2017))

Theorem (energy consistency)

If u ∈ W2t
1 (Ω0) for some t > s, then limh→0 Is[uh] = Is[u].

Theorem (convergence)

If we have energy consistency, then

lim
h→0

‖u− uh‖W2s′
1 (Ω0)

= 0, ∀s′ ∈ [0, s).
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Experiments

Problem: Ω = B(0, 1), u0 = χB(0,3/2) and s = 0.25.
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Experiments

Problem: Ω = B(0, 1) \ B(0, 1/2), u0 = χB(0,1/2) and s = 0.25.
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Concluding remarks

Fractional Laplacian (−∆)s: nonlocal operator of order 0 < 2s < 2.
Computational challenges include dealing with non-integrable singularities and

unbounded domains.

Boundary behavior: solutions of the problems discussed behave as dist(x, ∂Ω)s
⇒ characterize regularity in weighted Sobolev spaces⇒ use graded meshes.

Fractional obstacle problem: behavior near the free boundary may not be any

worse than behavior near ∂Ω.

Minimal surfaces: leads to nonlinear, degenerate diffusion problem. Solutions

may exhibit discontinuities near ∂Ω.

Thank you!
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