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Fractional Laplacian in R"

Lets € (0,1) and u : R" — R be smooth enough (belongs to Schwartz class).

@ Pseudodifferential operator:
F((=A)u) (&) = [g[*Fu(®).
@ Integral representation:

(=A)°u(x) =C(n,s) p.v./]R M dy,

" |X _ y|n+2s

225D (s+12)

7T (1os) 5@ normalization constant.

where C(n,s) =

@ Probabilistic interpretation: related to random walks with jumps.
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Fractional Laplacian in R"

Lets € (0,1) and u : R" — R be smooth enough (belongs to Schwartz class).

@ Pseudodifferential operator:
F((=A)u) (&) = [g[*Fu(®).
@ Integral representation:

(=A)°u(x) =C(n,s) p.v./]R M dy,

" |X _ y|n+2s

225D (s+12)

7T (1os) 5@ normalization constant.

where C(n,s) =
@ Probabilistic interpretation: related to random walks with jumps.

@ Pointwise limitsass — 0, 1:

lim (=A)°u = u,
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Integral definition for 2 C R"
Let 2 C R" be an open bounded set, and letf : Q2 — R.

@ Boundary value problem:

(=AYu=f inQ,
u=0 inQ°.

@ Integral representation:

(=A)u(x) =C(n,s) p.v./n m dy =f(x), xe.

@ Boundary conditions: imposed in Q¢ = R" \

u=0 inQ°.

@ Probabilistic interpretation: it is the same as over R" except that particles are
killed upon reaching Q¢.
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Between the identity and the Laplacian
Solutions to fractional obstacle problems on the square [—1, 1] x [—1, 1], with f = 0,

various s, and obstacle
33 1 1 1
o= (5 3)| of w3 (5-5)| o)

x(x) = max {le -
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Some remarks

@ There is not a unique way to define a “fractional Laplacian” over Q) (spectral,
restricted, tempered, directional...).

@ Numerical methods for the integral fractional Laplacian on bounded domains
include

» Finite elements (on integral representation): D’Elia & Gunzburger (2013),
Ainsworth & Glusa (2018).

» Finite differences: Huang & Oberman (2014), Duo, van Wyk & Zhang (2018).

» Walk-on-spheres method: Kyprianou, Osojnik & Shardlow (2017).

» Collocation methods: Zeng, Zhang & Karniadakis (2015), Acosta, B., Bruno & Maas
(2018)

> Finite elements (using Dunford-Taylor representation): Bonito, Lei & Pasciak (2017).

@ (To the best of my knowledge) these methods have been implemented mainly
for linear/semilinear problems.
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Goal & outline

Design finite element methods for nonlocal (fractional) problems. Derive Sobolev
regularity estimates and perform a finite element analysis of these problems on
bounded domains.

@ (Linear) Dirichlet problem.

» Regularity of solutions.
> Finite element discretizations.
» Reduced regularity near 92: graded meshes.

@ Fractional obstacle problem.

@ Fractional minimal surfaces.
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Function spaces

@ Fractional Sobolev spaces in R":

S {V 6 L2 ) |V‘H5 R") < OO}
with
WL-LE Y g TUEP R
T 2 RO xR |x —y|nt2s ’
1 2 2 %
V]srny == (v, V)2, [Vl (rn) i= (||VHL2(R") + \V|Hs(mn)> :

@ Fractional Sobolev spaces in (2:

H(Q) = {vlo : v € H'(R"), supp(v) C 2},  [[Vlq = VI
@ Dual space: H*(2) = {FIS(Q)} .
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Something old, something new...

@ All the basic analysis tools we need have a fractional counterpart!
Integration by parts formula

Coercive bilinear form on a suitable space (Poincaré inequality)

Finite elements = projection w.r.t. energy norm

Interpolation estimates

vy vy VvVYYy
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Something old, something new...

@ All the basic analysis tools we need have a fractional counterpart!

Integration by parts formula (see next slide) v/
Coercive bilinear form on a suitable space (Poincaré inequality) H3(Q) — H* () v/
Finite elements = projection w.r.t. energy norm Galerkin orthogonality v
Interpolation estimates Lagrange interpolation — quasi-interpolation v*

vy vy VvVYYy
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Something old, something new...

@ All the basic analysis tools we need have a fractional counterpart!

Integration by parts formula (see next slide) v/
Coercive bilinear form on a suitable space (Poincaré inequality) H3(Q) — H* () v/
Finite elements = projection w.r.t. energy norm Galerkin orthogonality v
Interpolation estimates Lagrange interpolation — quasi-interpolation v*

vy vy VvVYYy

@ Nonlocality
» The H°-seminorms are not additive with respect to domain partitions.
» Functions with disjoint supports may have a non-zero inner product: if u,v > 0 on

their supports, then

—2u(x) v(y)
e | ————“dxdy < 0.

(u,v)
supp(u) X supp(v)

» Singular integrals, integration on unbounded domains.

» How smooth are solutions? Is there a lifting property?
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Integration by pa rts (Dipierro, Ros-Oton & Valdinoci (2017))

[u,v] = /Qv(x)(—A)su(x) dx—i—/cv(x)./\/su(x) dx.

Here,

_ Cns) (ulx) = uy)(v() = v(y))
[[u’ V]] o 2 //(R"X]R")\(QCXQC) dXdY,

|X _ y‘n+2s

and M is a nonlocal derivative operator,

Nou(x) == C(n,s)/ Mdy, x € Q°.

Q |X _ y|n+25
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Integration by pa rts (Dipierro, Ros-Oton & Valdinoci (2017))

[u,v] = /Qv(x)(—A)su(x) dx—|—/cv(x)./\/su(x) dx

Here,

_ Cns) (ulx) = uy)(v() = v(y))
[[u’ V]] o 2 //(R"X]R")\(QCXQC dXdY,

|X _ y‘n+2s

and M is a nonlocal derivative operator,

Nsu(x) := C(n, s)/ﬂu(x)—u()d% x € Q°.

| _ y|n+25

Random walk interpretation: if the particle goes to x € )¢, it may return to any point
y € Q, with the probability of jumping from x to y being proportional to |x — y|~"~2.

The function Au can be regarded as a nonlocal flux density on €€ into .
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Dirichlet problem

Given f € H~5(), find u € H*(Q) such that

(=APu=f inQQ,
u=0 inQ°.
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Dirichlet problem

Given f € H~5(), find u € H*(Q) such that

(=APu=f inQQ,
u=0 inQ°.

@ Variational formulation:
[u.v] = (f,v) WveH(Q),
where (-, -) stands for the duality pairing H=5(Q) x H*(Q).
@ Poincaré inequality in H5(0):
IVIiz) < c(€,n,8)|V]ps@ny Vv e H*(Q).

Therefore, the form [[-, -] : H*(Q) x H*(Q) is an inner product in H*(£2), and we
will write [|v|7 o) = [v, v] /2.

@ Existence, uniqueness, and stability follow from Lax-Milgram theorem.
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Sobolev regularity of solutions

Theorem (Vishik & Eskin (1965), Grubb (2015))
Iff € H'(Q) for somer > —s and 0$) € C*°, then, for all e > 0,
H>*(Q) ifs+r<1/2,
€
TEN ) s> 1)
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Sobolev regularity of solutions

Theorem (Vishik & Eskin (1965), Grubb (2015))
Iff € H'(Q) for somer > —s and 0$) € C*°, then, for all e > 0,
H>*(Q) ifs+r<1/2,
€
TEN ) s> 1)

o Example: if Q = B(0,r) and f = 1, then the solution u is given by
u(x) = C(r* — x*)%,
which does not belong to H**'/2(0)). The regularity above is sharp!
@ Boundary behavior: if 9Q) € C* then
u(x) = dist(x, 9Q)° + v(x),

with v smooth and vanishing on 9¢).
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Formulation and best approximation

@ Mesh: let 7 be a shape-regular and quasi-uniform mesh of 2 of size h.

@ Finite element space: let

V( )*{VhGCO Vh|K€P1VK€T}

@ Discrete problem: find u, € V(7) such that
[uh,vh]] = (f, Vh) Vv, € V(T)
@ Best approximation: since we project over V(7) with respect to the energy
norm || - [l @) induced by [-, -], we get
lu = unllf o) = m'“ HU — Vil ()

WV (T

Juan Pablo Borthagaray Nonlocal, nonlinear, nonsmooth



Interpolation estimates in H*(£)

@ Localized estimates in H*(2) (Faermann (2002)):

| v(y)? C(n,o)
|V|ﬁs<n)§ {/ ) |n+25 dydx + h> IVIiEw | »
KeT K

where S is the patch associated with K € T and ¢ is the shape regularity
constant of 7.

@ Quasi-interpolation (P. Ciarlet Jr (2013)): if II, is the Scott-Zhang operator,

(v — Thv) (x) — (v = TIav) (y)|? 20-25) 12
/ s X — y[r 2 dy dx < P VI s
K

where the hidden constant depends on n, o, £ and blowsup ass 1 1.
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Interpolation estimates in H*(£)

@ Localized estimates in H*(2) (Faermann (2002)):

| v(y)? C(n,o)
|V|ﬁs<n)§ {/ ) |n+25 dydx + h> IVIiEw | »
KeT K

where S is the patch associated with K € T and ¢ is the shape regularity
constant of 7.

@ Quasi-interpolation (P. Ciarlet Jr (2013)): if II, is the Scott-Zhang operator,

(v = Tpv) (x) = (v = TIpv) (y) | -
[ [ dr e <
K

where the hidden constant depends on n, o, £ and blowsup ass 1 1.

@ Error estimate for quasi-uniform meshes:

1
lu = nllie ey < C(5. )3 1] [l 2.
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Example

Take 2 = B(0,1) C R? and f = 1. Then, the solution is given by

Orders of convergence in H*(()

s | Order (in h)
0.1 0.497
0.3 0.498
0.5 0.501
0.7 0.504
0.9 0.532

u(x) = C(1 — xP)5.

Discrete solution for s = 0.5.

Rate is quasi-optimal. Is it possible to improve the order of convergence?

Juan Pablo Borthagaray

Nonlocal, nonlinear, nonsmooth



Holder regularity of solutions

Theorem (Ros-Oton & Serra (2014))

Let 2 be a bounded Lipschitz domain satisfying an exterior ball condition. If
f € L>°(Q), thenu € C°(R") and

ulles@ny < C(2,5) [l ()

(Recall u(x) = dist(x, 9Q)* near 9. )
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Holder regularity of solutions

Theorem (Ros-Oton & Serra (2014))

Let 2 be a bounded Lipschitz domain satisfying an exterior ball condition. If
f € L>°(Q), thenu € C°(R") and

[ulles(rmy < C(2, 5)[[fllLoe (o)

(Recall u(x) ~ dist(x, 9€2)° near 952. )

@ Boundary behavior: if f € C# () (B < 2 — 2s), then there exist constants
Cy,Cy > O such that

ps | VU(X) — Vu(y)|

X — yPFE-1 < (4, sup 6(x)* | Vu(x)| < Co,

xeQ

sup 4(x,y)
X,y€eQ

where §(x) := dist(x, 9Q) and §(x,y) = min{d(x), 5(y)}.
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Weighted fractional Sobolev regularity

o Definition of space H.*?(Q): let « > 0and 6 € (0,1).

[Vv(x) — Vv(y)|? 2
IvIIZ = vl +// d(x,y)““dxdy,
Rt (@) Hal) (moxR\(@ex) X Y[R

with [[v]|uz ) = I(v + V) 6()% |12 -

Juan Pablo Borthagaray Nonlocal, nonlinear, nonsmooth



Weighted fractional Sobolev regularity

o Definition of space H.*?(Q): let « > 0and 6 € (0,1).

2 o 2 |Vv(x) — VV(Y)|2 20
Ve 0y = VI oy + //<Rann>\<m> o By e,

with [[v]|uz ) = I(v + V) 6()% |12 -

Theorem (Acosta & B. (2017))

Let ©2 be a bounded Lipschitz domain satisfying an exterior ball condition,

f € C'=5(Q), and £ > 0 be small. Then, the solution u of the linear Dirichlet

problem belongs to ﬁ}j;:fs (Q) and satisfies the estimate

C(%,s)
ullzrs—2e ) < THf”cH(ﬁ)-
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Error estimates in graded meshes

@ Weighted fractional Poincaré inequality: if S is star-shaped with respect to a
ball, ds is the diameter of S, and V = f, v, then

v =Vll2s) S ds "IVl (s)

@ Weighted quasi-interpolation: for the SZ quasi-interpolation operator 11,

(v = pv) () — (v — TTv)(y) 2 1-2
/ e x — y|nt+32s dyex S h EMHi*s e

(k)
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Error estimates in graded meshes

@ Weighted fractional Poincaré inequality: if S is star-shaped with respect to a
ball, ds is the diameter of S, and v = fs v, then

v =Vll2s) S ds ¥Vl (s)

@ Weighted quasi-interpolation: for the SZ quasi-interpolation operator 11,

/ (v = pv) () — (v — TTv)(y) 2

|X _ y|n+2s

1—-2e
dydx S 2V e g

Energy error estimate (Acosta & B. (2017)): let n = 2 and 7 be a graded mesh

satisfying
h? KNoQ +# 0
h < C ) )
k< Clo) {h dist(K, 0Q)1/2, Ko = 0,

whence #7 ~ h~2|logh|. Then,

llu— UhHﬁs(Q) < hlloghl ||f||c1—s(§)'
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Numerical experiment

Exact solution: if @ = B(0,1) C R? and f = 1, then u(x) = C(r? — |x|?)%,.

s

Value of s 0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Uniform 7 | 0.497

0.496

0.498

0.500

0.501

0.505

0.504

0.503

0.532

Graded 7 | 1.066

1.040

1.019

1.002

1.066

1.051

0.990

0.985

0.977
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Obstacle problem (with R. Nochetto & A. Salgado)

Given two smooth enough functions f, x: 2 — R, find u: R" — R, supported
in ©, such that
u>yx inf,
(7A)Su > f in Qa
(=A)Yu=f wheneveru > x.
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Obstacle problem (with R. Nochetto & A. Salgado)

Given two smooth enough functions f, x: 2 — R, find u: R" — R, supported
in ©, such that
u>yx inf,
(7A)Su > f in Qa
(=A)Yu=f wheneveru > x.

Can equivalently be written as a variational inequality:

Find u € IC such that

[uu—v] <(f,u—v) WveKk,

where K denotes the convex set K = {v € H*(): v > y a.e. in Q}.
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Assumptions
@ Domain: 99 is Lipschitz, and satisfies an exterior ball condition.

@ Data: from now on,

C12(@), se (0,1)
1

ci(n < () = -
XE ( )7 O —fef( ) {C172_2$(Q), = [%’

@ We assume that y < 0 on 012, so that

» the behavior of solutions near 95 is dictated by an elliptic (linear) problem;

» the nonlinearity is constrained to the interior of the domain.
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Assumptions
@ Domain: 99 is Lipschitz, and satisfies an exterior ball condition.

@ Data: from now on,

C12(@), se (0,1)
1

ci(n < () = -
Xe ( )7 O —fef( ) {C1’2_2$(Q), = [%’

@ We assume that y < 0 on 012, so that

» the behavior of solutions near 95 is dictated by an elliptic (linear) problem;

» the nonlinearity is constrained to the interior of the domain.

@ Non-locality: gluing interior and boundary estimates is not straightforward!
If » = 1 in a neighborhood of x, then it does not follow that

(=A)(nu)(x0) = (=A)°u(xo).

Juan Pablo Borthagaray Nonlocal, nonlinear, nonsmooth



Regularity in R"

Theorem (Caffarelli, Salsa & Silvestre (2008))
For the obstacle problem in R", if f € F,(R") and x € C*!(R"), then the
solution u belongs to C1:S(R™).

(In particular, u € H.T7¢(R") for all ¢ > 0.)

loc
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Regularity in R"

Theorem (Caffarelli, Salsa & Silvestre (2008))
For the obstacle problem in R", if f € Fs(R") and x € C%1(R"), then the
solution u belongs to C15(R™).

(In particular, u € H.T7¢(R") for all ¢ > 0.)

loc

Moral: free boundary regularity is not any worse than boundary regularity for the
linear problem.

Hope: prove regularity in weighted Sobolev spaces.
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Regularity for the obstacle problem on 2

@ Interior regularity: Caffarelli-Salsa-Silvestre’s theorem + localization argument.

@ Boundary regularity: use the result for the linear Dirichlet problem.
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Regularity for the obstacle problem on 2

@ Interior regularity: Caffarelli-Salsa-Silvestre’s theorem + localization argument.

@ Boundary regularity: use the result for the linear Dirichlet problem.

Theorem

letu € ﬁS(Q) be the solution to the fractional obstacle problem. Then, for

every ¢ > 0 we have thatu € FI%}LQS:EE(Q) with the estimate

@)

||U||ﬁ}/+;:35(n) < 2’

with C > 0 depending on x, s, n, 2, |[f|| , -
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Finite element approximation
@ Discrete problem: find up, € K = {vi, € Vi: v, > Tl x} such that

[un,un — vl < (f,un —vp)  Yvi € Kp.

@ Weighted Sobolev regularity = graded meshes.
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Finite element approximation
@ Discrete problem: find up, € K = {vi, € Vi: v, > Tl x} such that

[un,un — vl < (f,un —vp)  Yvi € Kp.

@ Weighted Sobolev regularity = graded meshes.
@ Error bound: writing

llu— uh||%5(ﬂ) = [u—up,u — Tpu] + [u — up, ITpu — ug],

we reach

1
5”“ uhHHs(Q 5”“ - Hhu”%s(g) + [[u — Up, pu — uhﬂ'

@ Interpolation error can be bounded by

llu = Ipull o) < Ch172€||u||ﬁi/+;:’;‘5(n)-
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Thus,

o= 1, ) < Pl g (= Tl — ).

Juan Pablo Borthagaray Nonlocal, nonlinear, nonsmooth



Thus,

lu— “hH < ch?t- 2E)||u||~1+s 2c iy + (U — up, TIpu — up)s.

He () - (@

@ Second term in RHS: integrate by parts and use discrete variational inequality,

(u — up, ITpu — up)s < Z/ (Ip(u—x) — (u—x)) (A)°u—1).

TeT
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Thus,

lu— uhH%s(Q) < Ch?(1=2¢) ||u||—f~,}/+2$:§g(m + (U — up, TThu — up)s.

@ Second term in RHS: integrate by parts and use discrete variational inequality,

(0= up T — up)s < 37 | (= x) = (u—x)) (~A)u —f).

TeT /T l l

Coincidence \Non-coincidence

Using the interior regularity u € C**(Q)
we deduce:

» (—A)Yuec' (),
> u—x €CchH(Q).

So, in these elements we have

[((=A)u—f) (Tp(u = x) = (u—x))| < Ch*.
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Convergence rate

Theorem

0 < f € F5(Q) and assume that x € C>1(Q) is such that x < 0 on 9.
Considering shape-regular graded meshes as before, if h is sufficiently small,
then it holds that

lu = unllzs ey < hlloghl.
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Numerical experiments

Problem: let 2 = B(0,1) C R2, and consider f, x so that the exact solution is
u(x) = (1= x|2)5 pS (),

where pés) is a certain Jacobi polynomial of degree two.

log(luu )

99 10 101 102

99 10 101 02 0 95 96

98 7 98
log(dim(V,)) log(dim(V))

Left: s = 0.1; right: s = 0.9. The rate observed in both cases is ~ h.
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Qualitative behavior
Problem: let 2 =B(0,1) C R?,f =0and

X(x) = % =[x = xol, withxo = (1/4,1/4).

s=0.1 s=0.5 s=0.9
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Fractional minimal surfaces (preliminary work with R. Nochetto & W. Li)

@ Interaction: given s € (0,1/2) and two disjoint sets A, B C R", define

1

@ Problem: suppose we are given £, E C R" with E N Q = (). We want to define
an extension E of E into 2 so that it minimizes a certain nonlocal perimeter.
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Fractional minimal surfaces (preliminary work with R. Nochetto & W. Li)

@ Interaction: given s € (0,1/2) and two disjoint sets A, B C R", define

1

@ Problem: suppose we are given £, E C R" with E N Q = (). We want to define
an extension E of E into 2 so that it minimizes a certain nonlocal perimeter.

@ Minimize I(E, E€) among all extensions E:
take care of interactions
> betweenENQandR" \ E,
> between Eand Q \ E.
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@ Nonlocal s-perimeter of E in 2: (Caffarelli, Roquejoffre & Savin (2010))

Per,(E, Q) := I(ENQ,R"\ E) + I(E\ 2, Q\ E).

@ Minimal sets: a measurable set E C R" is s-minimal in €2 if, for every
measurable set F such that E\ Q = F\ ©,

Pers(E, Q) < Per (F, Q).

@ Euler-Lagrange equation: a set E is s-minimal in € if and only if

(=A)* (xe — xrm\e) = 0, along OE.
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Graph minimal surfaces

Assume ) = Qg x R, and that
1
E={x=(X,x)) € R": x, < up(x)}, /E

where ug: R"1\ Qg — Ris given.
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Graph minimal surfaces

Assume Q = Qg x R, and that N

1

1

1

1

1 \ u 1

~ 1 \ 1
_ _ / n, / 1 \

E={x=(,xn) € R": xp <up(x)}, ) )

Uo k !

1

1

1

where ug: R"1\ Qg — Ris given.

We seek for u: R"~! — R such that u = ug in R" \ Qp, and

|X/ _ y/| _ y/‘n—l+2(s+l/2)
where r
1 1
8 (l") = 7/‘ 7nsdp'
’ rlo (14p2)%

Finding an s-nonlocal minimal surface in R" becomes a nonhomogeneous prob-
lem for a nonlinear, degenerate diffusion operator of order s + % inR"1L,
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Discretization

@ Finite element space: let
V(T) = {Vh S Co(ﬁo): Vh|K € P1VK e T}
e Discrete problem: find u, € V(7)) such that up, = ITyug in R"~1 \ Qg and,
for allv, € V(T),

e (20 )t i

_ y/| |X’ _ y/‘n+2s

o L%-gradient flow: initial guess u) € V(7') and time step 7. Given uf € V(T),
find uf ™! € V(T) such that

1 ( e+l _ u’k?M) _ //.gs <uﬁ(>"2 - uﬁ(X/)) (Un(y") = un (X)) (2ily') — ¢i(x)) dy’.

up _ y’\ ‘X/ _ y/‘n+25

V1<i<AN.
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Energy

The solution u minimizes the energy

u(x) —u(y) 1
Is[u] = // I Gs ( X —y| x — y[n—2+2s dy dx,
(Rn—1xRN—1)\ (25 xQ5) y y

where G; is defined as

a

ai

Go(a) == / 9P 4y (G =g
0 (1142)%

Since a < C(Gs(a) + 1), we have

|u|W1.25<QO) < CIS[U} + C(Q()).
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Convergence

@ Open question: how regular are nonlocal
minimal surfaces?

@ Stickiness phenomenon: boundary datum
may not be attained continuously!

(Dipierro, Savin & Valdinoci (2017))
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Convergence

@ Open question: how regular are nonlocal
minimal surfaces?

@ Stickiness phenomenon: boundary datum
may not be attained continuously!

(Dipierro, Savin & Valdinoci (2017))

-M

Theorem (energy consistency)
If u € W2(Qq) for some t > s, then  limy_.o Is[un] = I5[u].

Theorem (convergence)

If we have energy consistency, then

. _ ’
P!l_rpOHu — “h||w§5’(90) =0, Vs e€l0,s).
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Experiments

Problem: Q = B(0, 1), up = Xs(0,3/2) and s = 0.25.
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Experiments

Problem: Q = B(0, 1) \ B(0,1/2), ug = xp(0,1/2) and s = 0.25.
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Concluding remarks

@ Fractional Laplacian (—A)*: nonlocal operator of order 0 < 2s < 2.
Computational challenges include dealing with non-integrable singularities and
unbounded domains.

@ Boundary behavior: solutions of the problems discussed behave as dist(x, 0§2)°
= characterize regularity in weighted Sobolev spaces = use graded meshes.

@ Fractional obstacle problem: behavior near the free boundary may not be any
worse than behavior near 9f).

@ Minimal surfaces: leads to nonlinear, degenerate diffusion problem. Solutions
may exhibit discontinuities near 052.
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Concluding remarks

@ Fractional Laplacian (—A)*: nonlocal operator of order 0 < 2s < 2.
Computational challenges include dealing with non-integrable singularities and
unbounded domains.

@ Boundary behavior: solutions of the problems discussed behave as dist(x, 0§2)°
= characterize regularity in weighted Sobolev spaces = use graded meshes.

@ Fractional obstacle problem: behavior near the free boundary may not be any
worse than behavior near 9f).

@ Minimal surfaces: leads to nonlinear, degenerate diffusion problem. Solutions
may exhibit discontinuities near 052.

Thank you!
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